Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(3): 1541-1549, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38394608

RESUMO

Amphiphilic Janus dendrimers (JDs), synthetic alternatives to lipids, have the potential to expand the scope of nanocarrier delivery systems. JDs self-assemble into vesicles called dendrimersomes, encapsulate both hydrophobic cargo and nucleic acids, and demonstrate enhanced stability in comparison to lipid nanoparticles (LNPs). Here, we report the ability to enhance the cellular uptake of Janus dendrimersomes using DNA aptamers. Azido-modified JDs were synthesized and conjugated to alkyne-modified DNAs using copper-catalyzed azide alkyne cycloaddition. DNA-functionalized JDs form nanometer-sized dendrimersomes in aqueous solution via thin film hydration. These vesicles, now displaying short DNAs, are then hybridized to transferrin receptor binding DNA aptamers. Aptamer-targeted dendrimersomes show improved cellular uptake as compared to control vesicles via fluorescence microscopy and flow cytometry. This work demonstrates the versatility of using click chemistry to conjugate functionalized JDs with biologically relevant molecules and the feasibility of targeting DNA-modified dendrimersomes for drug delivery applications.


Assuntos
Aptâmeros de Nucleotídeos , Dendrímeros , Dendrímeros/química , Sistemas de Liberação de Medicamentos , DNA , Alcinos
2.
Aging Cell ; 19(9): e13184, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32720744

RESUMO

Genomic instability is one of the hallmarks of aging, and both DNA damage and mutations have been found to accumulate with age in different species. Certain gene families, such as sirtuins and the FoxO family of transcription factors, have been shown to play a role in lifespan extension. However, the mechanism(s) underlying the increased longevity associated with these genes remains largely unknown and may involve the regulation of responses to cellular stressors, such as DNA damage. Here, we report that FOXO3a reduces genomic instability in cultured mouse embryonic fibroblasts (MEFs) treated with agents that induce DNA double-strand breaks (DSBs), that is, clastogens. We show that DSB treatment of both primary human and mouse fibroblasts upregulates FOXO3a expression. FOXO3a ablation in MEFs harboring the mutational reporter gene lacZ resulted in an increase in genome rearrangements after bleomycin treatment; conversely, overexpression of human FOXO3a was found to suppress mutation accumulation in response to bleomycin. We also show that overexpression of FOXO3a in human primary fibroblasts decreases DSB-induced γH2AX foci. Knocking out FOXO3a in mES cells increased the frequency of homologous recombination and non-homologous end-joining events. These results provide the first direct evidence that FOXO3a plays a role in suppressing genome instability, possibly by suppressing genome rearrangements.


Assuntos
Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Proteína Forkhead Box O3/genética , Fatores Etários , Humanos , Mutação
3.
Sci Adv ; 5(8): eaax0801, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31489374

RESUMO

Small interfering RNA (siRNA) has found many applications in tissue regeneration and disease therapeutics. Effective and localized siRNA delivery remains challenging, reducing its therapeutic potential. Here, we report a strategy to control and prolong siRNA release by directly tethering transfection-capable siRNA to photocrosslinked dextran hydrogels. siRNA release is governed via the hydrolytic degradation of ester and/or disulfide linkages between the siRNA and hydrogels, which is independent of hydrogel degradation rate. The released siRNA is shown to be bioactive by inhibiting protein expression in green fluorescent protein-expressing HeLa cells without the need of a transfection agent. This strategy provides an excellent platform for controlling nucleic acid delivery through covalent bonds with a biomaterial and regulating cellular gene expression, which has promising potential in many biomedical applications.


Assuntos
Preparações de Ação Retardada/farmacologia , Inativação Gênica/efeitos dos fármacos , Hidrogéis/farmacologia , RNA Interferente Pequeno/genética , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Interferência de RNA/efeitos dos fármacos , Interferência de RNA/fisiologia , Transfecção/métodos
4.
Biomacromolecules ; 20(2): 712-727, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30354069

RESUMO

Natural, including plant, and synthetic phenolic acids are employed as building blocks for the synthesis of constitutional isomeric libraries of self-assembling dendrons and dendrimers that are the simplest examples of programmed synthetic macromolecules. Amphiphilic Janus dendrimers are synthesized from a diversity of building blocks including natural phenolic acids. They self-assemble in water or buffer into vesicular dendrimersomes employed as biological membrane mimics, hybrid and synthetic cells. These dendrimersomes are predominantly uni- or multilamellar vesicles with size and polydispersity that is predicted by their primary structure. However, in numerous cases, unilamellar dendrimersomes completely free of multilamellar assemblies are desirable. Here, we report the synthesis and structural analysis of a library containing 13 amphiphilic Janus dendrimers containing linear and branched alkyl chains on their hydrophobic part. They were prepared by an optimized iterative modular synthesis starting from natural phenolic acids. Monodisperse dendrimersomes were prepared by injection and giant polydisperse by hydration. Both were structurally characterized to select the molecular design principles that provide unilamellar dendrimersomes in higher yields and shorter reaction times than under previously used reaction conditions. These dendrimersomes are expected to provide important tools for synthetic cell biology, encapsulation, and delivery.


Assuntos
Dendrímeros/química , Hidroxibenzoatos/química , Bibliotecas de Moléculas Pequenas/química , Tensoativos/química , Lipossomas Unilamelares/química
5.
Langmuir ; 34(19): 5527-5534, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29660277

RESUMO

Lamellar to nonlamellar membrane shape transitions play essential roles in key cellular processes, such as membrane fusion and fission, and occur in response to external stimuli, including drug treatment and heat. A subset of these transitions can be modeled by means of thermally inducible amphiphile assemblies. We previously reported on mixtures of hydrogenated, fluorinated, and hybrid Janus dendrimers (JDs) that self-assemble into complex dendrimersomes (DMSs), including dumbbells, and serve as promising models for understanding the complexity of biological membranes. Here we show, by means of a variety of complementary techniques, that DMSs formed by single JDs or by mixtures of JDs undergo a thermally induced lamellar-to-sponge transition. Consistent with the formation of a three-dimensional bilayer network, we show that DMSs become more permeable to water-soluble fluorophores after transitioning to the sponge phase. These DMSs may be useful not only in modeling isotropic membrane rearrangements of biological systems but also in drug delivery since nonlamellar delivery vehicles can promote endosomal disruption and cargo release.


Assuntos
Membrana Celular/química , Dendrímeros/química , Modelos Biológicos , Sistemas de Liberação de Medicamentos , Transição de Fase
6.
Proc Natl Acad Sci U S A ; 114(34): E7045-E7053, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784782

RESUMO

A three-component system of Janus dendrimers (JDs) including hydrogenated, fluorinated, and hybrid hydrogenated-fluorinated JDs are reported to coassemble by film hydration at specific ratios into an unprecedented class of supramolecular Janus particles (JPs) denoted Janus dendrimersomes (JDSs). They consist of a dumbbell-shaped structure composed of an onion-like hydrogenated vesicle and an onion-like fluorinated vesicle tethered together. The synthesis of dye-tagged analogs of each JD component enabled characterization of JDS architectures with confocal fluorescence microscopy. Additionally, a simple injection method was used to prepare submicron JDSs, which were imaged with cryogenic transmission electron microscopy (cryo-TEM). As reported previously, different ratios of the same three-component system yielded a variety of structures including homogenous onion-like vesicles, core-shell structures, and completely self-sorted hydrogenated and fluorinated vesicles. Taken together with the JDSs reported herein, a self-sorting pathway is revealed as a function of the relative concentration of the hybrid JD, which may serve to stabilize the interface between hydrogenated and fluorinated bilayers. The fission-like pathway suggests the possibility of fusion and fission processes in biological systems that do not require the assistance of proteins but instead may result from alterations in the ratios of membrane composition.


Assuntos
Fusão Celular , Dendrímeros/química , Hidrogênio/química , Dendrímeros/síntese química , Modelos Biológicos , Estrutura Molecular
7.
J Am Chem Soc ; 138(38): 12655-63, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27580315

RESUMO

The modular synthesis of a library containing seven self-assembling amphiphilic Janus dendrimers is reported. Three of these molecules contain environmentally friendly chiral-racemic fluorinated dendrons in their hydrophobic part (RF), one contains achiral hydrogenated dendrons (RH), while one denoted hybrid Janus dendrimer, contains a combination of chiral-racemic fluorinated and achiral hydrogenated dendrons (RHF) in its hydrophobic part. Two Janus dendrimers contain either chiral-racemic fluorinated dendrons and a green fluorescent dye conjugated to its hydrophilic part (RF-NBD) or achiral hydrogenated and a red fluorescent dye in its hydrophilic part (RH-RhB). These RF, RH, and RHF Janus dendrimers self-assembled into unilamellar or onion-like soft vesicular dendrimersomes (DSs), with similar thicknesses to biological membranes by simple injection from ethanol solution into water or buffer. Since RF and RH dendrons are not miscible, RF-NBD and RH-RhB were employed to investigate by fluorescence microscopy the self-sorting and coassembly of RF and RH as well as of phospholipids into hybrid DSs mediated by the hybrid hydrogenated-fluorinated RHF Janus dendrimer. The hybrid RHF Janus dendrimer coassembled with both RF and RH. Three-component hybrid DSs containing RH, RF, and RHF were formed when the proportion of RHF was higher than 40%. With low concentration of RHF and in its absence, RH and RF self-sorted into individual RH or RF DSs. Phospholipids were also coassembled with hybrid RHF Janus dendrimers. The simple synthesis and self-assembly of DSs and hybrid DSs, their similar thickness with biological membranes and their imaging by fluorescence and (19)F-MRI make them important tools for synthetic biology.

8.
Mol Ther ; 24(1): 146-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26412590

RESUMO

Due to their ability to knock down the expression of any gene, siRNAs have been heralded as ideal candidates for treating a wide variety of diseases, including those involving "undruggable" targets. However, the therapeutic potential of siRNAs remains severely limited by a lack of effective delivery vehicles. Recently, lipid nanoparticles (LNPs) containing ionizable cationic lipids have been developed for hepatic siRNA delivery. However, their suitability for delivery to other cell types has not been determined. We have modified LNPs for preferential targeting to dendritic cells (DCs), central regulators of immune responses. To achieve directed delivery, we coated LNPs with a single-chain antibody (scFv; DEC-LNPs), specific to murine DEC205, which is highly expressed on distinct DC subsets. Here we show that injection of siRNAs encapsulated in DEC-LNPs are preferentially delivered to DEC205(+) DCs. Gene knockdown following uptake of DEC-LNPs containing siRNAs specific for the costimulatory molecules CD40, CD80, and CD86 dramatically decreases gene expression levels. We demonstrate the functionality of this knockdown with a mixed lymphocyte response (MLR). Overall, we report that injection of LNPs modified to restrict their uptake to a distinct cell population can confer profound gene knockdown, sufficient to inhibit powerful immune responses like the MLR.


Assuntos
Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Antígenos CD40/metabolismo , Células Dendríticas/imunologia , Lipídeos/química , RNA Interferente Pequeno/administração & dosagem , Animais , Regulação da Expressão Gênica , Injeções , Fígado/metabolismo , Camundongos , Terapia de Alvo Molecular , Nanopartículas/administração & dosagem , Nanopartículas/química
9.
Methods Mol Biol ; 1380: 211-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26552829

RESUMO

Aptamers selected against cell surface receptors represent a unique set of ligands that can be used to target nanoparticles and other therapeutics to specific cell types. Here, we describe a method for using aptamers to deliver stable nucleic acid lipid particles (SNALPs) encapsulating small interfering RNA (siRNA) to cells in vitro. Using this method, we have demonstrated the ability of aptamer-conjugated SNALPs to achieve target-specific delivery and siRNA-mediated knockdown of a gene of interest. We also describe methods to characterize SNALP size, siRNA encapsulation efficiency, and aptamer conjugation efficiency.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas de Transferência de Genes , Lipídeos , Nanopartículas , Ácidos Nucleicos , RNA Interferente Pequeno , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Citometria de Fluxo , Lipídeos/química , Nanopartículas/química , Ácidos Nucleicos/química , Tamanho da Partícula , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química
10.
J Am Chem Soc ; 137(6): 2171-4, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25634639

RESUMO

Lipid-based micelles provide an attractive option for therapeutic and diagnostic applications because of their small size (<20 nm) and ability to self-assemble and improve the solubility of both hydrophobic drugs and dyes. Their use, however, has been challenged by the fact that these particles are inherently unstable in serum becaue of interactions with protein components, which drives the micelle equilibrium to the monomeric state. We have engineered serum stabilized micelles using short quadruplex forming oligonucleotide extensions as the lipid headgroup. Quadruplex formation on the surface of the particles, confirmed by (1)H NMR, results in slight distortion of the otherwise spherical micelles and renders them resistant to disassembly by serum proteins for >24 h. Using antisense oligonucleotides we demonstrated that disruption of the quadruplex leads to micelle destabilization and cargo release. The ability to use oligonucleotide interactions to control lipid particle stability represents a new approach in the design of programmed nanoscale devices.


Assuntos
Lipídeos/química , Micelas , Oligonucleotídeos/química , Microscopia Eletrônica de Transmissão
11.
Mol Ther Nucleic Acids ; 1: e21, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23344001

RESUMO

The transferrin receptor, CD71, is an attractive target for drug development because of its high expression on a number of cancer cell lines and the blood brain barrier. To generate serum-stabilized aptamers that recognize the human transferrin receptor, we have modified the traditional aptamer selection protocol by employing a functional selection step that enriches for RNA molecules which bind the target receptor and are internalized by cells. Selected aptamers were specific for the human receptor, rapidly endocytosed by cells and shared a common core structure. A minimized variant was found to compete with the natural ligand, transferrin, for receptor binding and cell uptake, but performed ~twofold better than it in competition experiments. Using this molecule, we generated aptamer-targeted siRNA-laden liposomes. Aptamer targeting enhanced both uptake and target gene knockdown in cells grown in culture when compared to nonmodified or nontargeted liposomes. The aptamer should prove useful as a surrogate for transferrin in many applications including cell imaging and targeted drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...